2021

Full Marks - 60
Time - 3 hours
The figures in the right-hand margin indicate marks
Answer all questions

Part-I

1. Answer the following : 1×8
a) Find the asymptotes of the curve

$$
y^{3}=x^{2}(2 a-x)
$$

b) Find $\frac{d \bar{v}}{d t}$ at $(1,0,1)$ if

$$
\overline{\mathrm{v}}=\cosh \text { at } \hat{\mathrm{i}}+\sin \text { hat } \hat{\mathrm{j}}+\mathrm{e}^{\mathrm{at}} \hat{\mathrm{k}} .
$$

c) Evaluate

$$
\int \frac{x d x}{x^{4}+16}
$$

d) Write nth derivative of $\log x$.
e) Evaluate

$$
\lim _{x \rightarrow \frac{1}{2}}(\sin x)^{\tan x}
$$

f) If $y=\log \sin x$, find the radius of curvature.
g) Evaluate $\int_{2}^{\pi / 2} \sin ^{6} x d x$ using Walli's formula.
h) Find the exact arc length of the curve $x=\sin 3 t$, $y=\cos 3 t$ on the interval $t \in[0, \pi]$.

Part-II

2. Answer any eight of the following :
a) Find the whole arc of the region between the curve $x^{2}=a^{2}(a-x)$ and $y-a x i s$.
b) Evaluate $\int_{0}^{1}\left(e^{-3 t} \hat{i}+t^{2} \hat{j}+\operatorname{cosht} \hat{k}\right) d t$.
c) Evaluate

$$
\operatorname{Lt}_{\theta \rightarrow \pi / 2} \frac{\log (\theta-\pi / 2)}{\tan \theta}
$$

d) Find radius of curvature to the curve $r=a \cos \theta$.
e) Fine the rotation angle θ to remove $x y$-term in the equation

$$
x^{2}+2 \sqrt{3} x y+3 y^{2}-2 x+y-1=0
$$

f) Write the reduction formula for

$$
\int \sin ^{x} x d x
$$

g) Show that the vector valued function $\vec{r}(\mathrm{t})=\left(2 \mathrm{t}, 5 \mathrm{t}, \mathrm{t}^{2}+\mathrm{t}\right)$ is continuous.
h) Show that the asymptotes of the cubic $x^{2} y-x y^{2}+x y+y^{2}+x-y=0$. Cut the curve again in three points which lie on the line $x+y=0$.
i) Classify the conic

$$
4 x^{2}-4 x y+y^{2}-8 x-6 y+5=0
$$

j) Find $y(t)$, given

$$
y^{1}(\mathrm{t})=2 \mathrm{t} \hat{\mathrm{i}}+3 \mathrm{t}^{2} \hat{\mathrm{j}}, \mathrm{y}(0)=\hat{\mathrm{i}}-2 \hat{\mathrm{j}} .
$$

Part-III

3. Answer any eight of the following :
a) Find the vertical and Horizontal asymptotes of the graph of the function

$$
f(x)=\frac{3 x+5}{6-x}
$$

b) Find the area of the surface generated by revolving the curve

$$
y=\sqrt{4-x^{2}},-1 \leq x \leq 1 \text { about } x \text {-axis. }
$$

c) Using Leibnitz rule to find y_{3} where $y=x^{3} \sin x$.
d) Evaluate $\underset{x \rightarrow \infty}{\operatorname{Lt}}\left(\frac{x}{1+x}\right)^{x}$.
e) Use reduction formula to evaluate

$$
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}
$$

f) Find the arc length of the ellipse

g) Show that the graph of

$$
\overline{\mathrm{r}}(\mathrm{t})=3(\cos \mathrm{t}+1) \hat{\mathrm{i}}+2(\sin \mathrm{t}+1) \hat{\mathrm{j}} \text { is an ellipse. }
$$

h) Find $\vec{a} \cdot(\vec{b} \times \vec{c})$ if $\bar{a}=2 \hat{i}+3 \hat{j}+7 \hat{k}, \vec{b}=\hat{i}+\hat{j}-4 \hat{k}$, $\vec{c}=3 \hat{i}-2 \hat{j}+5 \hat{k}$.
i) Trace the graph of $\mathrm{y}=3 \sin (2 \mathrm{x}-4)$ (without explanation)
j) Find the radius of curvature at $(0,0)$ for the curve $2 x^{4}+3 y^{4}+4 x^{2} y+x y-y^{2}+2 x=0$

Part-IV

4. a) Find the nth derivative of $y=e^{x} \sin ^{2} x$.

OR

b) If $y=\sin \left(m \sin ^{-1} x\right)$, then prove

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}-m^{2}\right) y_{n}=0
$$

[6]

5. a) Derive the reduction formula for

$$
\begin{align*}
& \int_{0}^{\pi / 6} \mathrm{e}^{\mathrm{ax}} \sin b x d x \text { and hence or otherwise } \\
& \text { evaluate } \int_{0}^{\pi} \mathrm{e}^{x} \sin x d x . \tag{6}
\end{align*}
$$

OR

b) Prove that

$$
\int_{0}^{\pi / 2} \log \cos x d x=\pi / 2 \log \left(\frac{1}{2}\right)
$$

6. a) Find the length of the arc of the parabola $x^{2}=4 a y$ measured from the vertex to one extremity of the latus rectum.

OR

b) Find the volume of the solid generated by revolving around x-axis, the area enclosed by $x y=4$ and $x+y=5$, using cyclindrical shell method and washer method.

$$
[7]
$$

7. a) If $\overrightarrow{\mathrm{F}}_{1}=t \hat{\mathrm{i}}+4 t^{2} \hat{\mathrm{j}}+5 t^{3} \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{F}}_{2}=3 t^{3} \hat{\mathrm{i}}+6 t^{2} \hat{\mathrm{j}}+2 \mathrm{t} \hat{\mathrm{k}}$,

$$
\text { then find } \frac{\mathrm{d}}{\mathrm{dx}}\left(\overrightarrow{\mathrm{~F}}_{1} \cdot \overrightarrow{\mathrm{~F}}_{2}\right) \text { and } \frac{\mathrm{d}}{\mathrm{dt}}\left(\overrightarrow{\mathrm{~F}}_{1} \times \overrightarrow{\mathrm{F}}_{2}\right) \text {. }
$$

OR

b) Find the unit tangent and unit normal to the curve

$$
\overrightarrow{\mathrm{r}}(\mathrm{t})=(3 \sin t) \hat{i}+(3 \cos t) \hat{j}+4 t \hat{k} .
$$

2021
 Full Marks - 80
 Time - 3 hours

The figures in the right-hand margin indicate marks
Answer all questions

Part-I

1. Answer the following : 1×12
a) Find the power set of the set $\mathrm{A}=\{\phi,\{\phi\}\}$.
b) Define Zorn's Lemma.
c) Define Chinese remainder theorem.
d) Write the converse, inverse, contrapositive of the statement $\mathrm{p} \rightarrow \mathrm{q}$.
e) How many integers between 1 and 600 divisible by 3 or 5 ?
f) How many functions are there from a set with m elements to a set with n elements ?
g) What is the co-efficient of ${ }_{25} x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$?
h) Show that the matrix

$$
A=\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right] \text { is a Hermitian matrix. }
$$

i) Draw the graph $\mathrm{K}_{2,5}$.
j) Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid$ divides $b\}$?
k) Write the adJacency matrix of the matrix

1) Show that k_{n} has a Hamilton circuit wherever $n \geq 3$.

Part-II

2. Answer any eight of the following:
a) What is the solution of the recurrence relation

$$
a_{n}=6 a_{n-1}-9 a_{n-2}
$$

with initial conditions $a_{0}=1$ and $a_{1}=6$?

[3]

b) Let n be the positive integer,

Then prove $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$
c) Find the rank of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 2 & 3 \\
-1 & 1 & 0
\end{array}\right]
$$

d) If λ is an eigen value of the matrix A, Prove that $\frac{1}{\lambda}$ is an eigen value of A^{-1} if A is non-singular.
e) Show that K_{5} is not planar.
f) Write the incidence matrix for the graph G.

g) Show that $n(n+1)(n+5)$ is a multiple of 6 .
h) Show that $(p \wedge q) \rightarrow(p \vee q)$ is tautology.
i) Show that the set of positive rational numbers is countable.
j) Use generating functions to find the number of r - combinations from a set with n elements when repetition of elements is allowed.

Part-III

3. Answer any eight of the following :
a) Determine all 2×2 matrices that commute with

$$
\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)
$$

b) How many solutions does $x_{1}+x_{2}+x_{3}=11$ have, where x_{1}, x_{2} and x_{3} are non-negative integers with $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?
c) Draw a graph with 4 vertices $V_{1}, V_{2}, V_{3}, V_{4}$ such that $\operatorname{deg} V_{1}=1, \operatorname{deg} V_{2}=3, \operatorname{deg} V=4$ and $\operatorname{deg} V_{4}=2$.

[5]

d) Reduce the following matrix to the row-reduced echelon from

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
1 & 1 & -1 & 2 \\
0 & 2 & 1 & -1
\end{array}\right]
$$

e) Suppose that connected planar simple graph has 20 vertices, each of degree 3 . How many regions does a representation of this planar graph split the plane?
f) Let f and g be the functions defined by $f: R \rightarrow R^{+} \cup\{0\}$ with $f(x)=x^{2}$ and $g: R^{+} \cup\{0\} \rightarrow R$ with $g(x)=\sqrt{x}$. then find fog (x).
g) Test the consistency and solve the system
$x+y+z=6$
$x+2 y-3 z=-4$
$-x-4 y+9 z=18$
h) Find the characteristics polynomial, characterstic equation and the Eigen values of the matrix $\left(\begin{array}{cc}0 & 3 \\ 2 & -1\end{array}\right)$.
i) Prove A graph is non-planar if and only if it ${ }^{6}$. contains a subgraph homomorphic to $\mathrm{k}_{3,3} \mathrm{k}_{5}$.
j) Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

Part-IV

4. a) Define Tautology. Construct the Truth Table for

$$
(\mathrm{p} \wedge q) \vee(\neg \mathrm{p} \wedge \mathrm{r}) \vee(\mathrm{q} \wedge \mathrm{r})
$$

OR

b) State Chinese Reminder Theorem.

Solve $x \equiv 1(\bmod 2), x \equiv 3(\bmod 5)$,
$x \equiv 4(\bmod 9)$ Using Chinese Theorem.
5. a) Define principle of mathematical Induction. Using this prove $2^{4 x}-1$ is divisible by 15 . 7

OR

b) Find the solution to the recurrence relation

$$
\begin{aligned}
& a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3} \text { with initial conditions } \\
& a_{0}=2, a_{1}=5 \text { and } a_{2}=15 .
\end{aligned}
$$

a) Find the range, Kernel, rank and nullity of the matrix

7

$$
\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 0 \\
1 & -1 & -1
\end{array}\right)
$$

OR

b) Solve the followig by row-reduction method.

$$
\begin{aligned}
& x_{1}+2 x_{2}+4 x_{3}+x_{4}=4 \\
& 2 x_{1}-x_{3}+3 x_{4}=4 \\
& x_{1}-2 x_{2}-x_{3}=0 \\
& 3 x_{1}+x_{2}-x_{3}-5 x_{4}=7
\end{aligned}
$$

7. a) A graph G has 20 vertices. Any two distinct vertices x and y have the property that $\operatorname{deg}(x)+\operatorname{deg}(y) \geq 19$. Prove that G is connected.

OR

b) Let G be connected planar simple graph with a edges and v vertices. Let r be the number of regions in a planar representation of G. then prove $\mathrm{r}=\mathrm{e}-\mathrm{v}+2$.

2019

> Full Marks - 80
> Time - 3 hours

The figures in the right-hand margin indicate marks

Answer all questions

1. a) Define asymptote. Find all the asymptotes of the curve $x^{3} y-y^{4}-3 x^{2} y^{2}+3 x y^{3}-x y+y^{2}-2=0 . \quad 10$
b) Find the area of the circle $x^{2}+y^{2}=16$ using quadrature.
c) Find the curvature of the curve 3 $x^{3}+y^{3}+x^{2}+y^{2}+y=0$

OR

d) Find the radius of curvature of the curve $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$ where it touches x-axis.
e) Find the asymptote parallel to y-axis of the curve $x^{2} y^{2}-a^{2}\left(x^{2}+y^{2}\right)=0$.
f) Find the volume of a sphere of radius a by revolving the circle $x^{2}+y^{2}=a^{2}$ about x-axis. 3
2. a) Prove that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ and find the point of contact.
b) Identify the surface $\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{4}=1$ and find its intercept on y-axis.
c) Find the points of intersection of the conicoid $12 x^{2}-17 y^{2}+7 z^{2}=7$ and the line

$$
\begin{equation*}
\frac{x+5}{-3}=\frac{y-4}{1}=\frac{z-11}{7} \tag{3}
\end{equation*}
$$

OR

d) Find the equation of the enveloping cylinder on the shpere $x^{2}+y^{2}+z^{2}=4$ and whose generations are parallel to the line $\frac{x}{1}=\frac{y}{-1}=\frac{z}{1}$.
e) Find the radius of the circle given by the equation $x^{2}+y^{2}+z^{2}-2 y-4 z-11=0=x+2 y+2 z-15$.
f) Prove that the plane $24 x+51 y-28 z+7=0$ touches the conicoid $12 x^{2}-17 y^{2}+7 z^{2}=7 . \quad 3$
3. a) Examine the continuity of $f(x, y)$ at $(0,0)$ where

$$
f(x, y)=\left(\begin{array}{cc}
\frac{x y^{2}}{x^{4}+y^{4}}, & (x, y) \neq(0,0) \tag{10}\\
0, & (x, y)=(0,0)
\end{array}\right.
$$

b) If $f(x, y)=\frac{x+y}{x-y}$, them find $f_{x}(2,1)$.
c) If $z=\ln r$ wher $r^{2}=(x-a)^{2}+(y-b)^{2}$, then prove that $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$.
OR
d) Evaluate $\iint_{R}(x+y) d y d x$, where R in the region bounded by $\mathrm{x}=0, \mathrm{x}=2, \mathrm{y}=\mathrm{x}, \mathrm{y}=\mathrm{x}+2 . \quad 10$
e) Expand $f(x, y)=x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ by Taylor's theorem. 3
f) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+y^{2}}$
4. a) What is homogenous differential equation? Solve $\left(x^{2}-2 y^{2}\right) d x+x y d y=0$.
b) Solve: $p^{2}-2 x p+1=0$ where $p=\frac{d y}{d x}$.
c) Find an integrating factor of

$$
\begin{gathered}
\left(3 x^{2}-y^{2}\right) d y-2 x y d x=0 \\
\text { OR }
\end{gathered}
$$

d) What is exact differential equation? Solve the IVP:
$(\cos x+y \sin x) d x-\cos x d y=0, y(\pi)=0.10$
e) Solve : $x y d x+(x+1) d y=0$.
f) Solve: $x=p^{3}-p+2$, where $p=\frac{d y}{d x}$.
5. a) Solve: $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x+\cos 3 x . \quad 10$
b) Solve: $\left(D^{4}+2 D^{2}+1\right) y=0$.
c) Find the Laplace transform of $f(t)=3 \sin u t-2 \cos 5 t$.

OR
d) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-3 y=x^{2} \log x$.
e) Find particular integral of $\left(D^{2}+1\right)=\operatorname{cosec} x$ by method of variation of parameter.
f) $\operatorname{Find} L^{-1}\left[\frac{p+1}{p^{3}+p^{2}-6 p}\right]$

77

